Ppostprocessor generator

NCsoft

Postprocessor generator

NCsoft

Postprocessor Generator
SGPOST
The grammar
 Major file

Minor file

The controller

Formats

Codes

Machine_tool strokes

Time management

Modes

End of block

Machine-tool kinematics

G-codes

M-codes
The macros

Variables

Jumps

Macros exits

Links with the grammar

The debugger

Search functions

Special macros

Compiling the macros
The reverse postprocessor
Beginning and end of program

Comments

Links

Contexts

ISO oriented functions

ISODEF

ISOPOS

ISOCODE

ISOVAL

ISONUM

System variables.

[image: image1.png]
To get SGPOST window displayed with generator optional feature, enter choice -d instead of -w

sgpost -d :

You will get 2 more windows : subroutine execution monitoring window at top left, and variable monitoring window at bottom right.

The grammar

The grammar specifies the syntaxis permitted when decoding text or binary CLFILE instructions. 'Syntaxis ERROR' message will be displayed if a non-conformance to the grammar is found.

With the following statements :

SPINDL / VALUE , VALUE (VALUE : numerical value)

SPINDL / RPM , VALUE

SPINDL / ON

DISPLY / STRING
(STRING : string of characters)

the following writings are acceptable :

SPINDL / RPM , 1000 , ON

SPINDL / 1000 , RPM

DISPLY / this is an example

but the following is illegal :

SPINDL / CLW

because CLW is not included in the list

SPINDL / ON , VALUE

because ON does not admit a value

SPINDL / RPM , VALUE , VALUE
because RPM admits one value only

SPINDL / this is an example

because the string of characters est illegal

For SPINDL macro, access to the grammar is via variables ARGn .on, ARGn.nval and ARGn.val[]. For DISPLY macro, it si via variable ARG0.

ARG0

string of characters following major word DISPLY

ARG1.on

there exists at least one value associated with major word SPINDL

ARG1.nval
number of values read (maximum = 2)

ARG1.val[]
values

ARG2.on

minor word RPM exists

ARG2.nval

nomber of values read after RPM (maximum = 1)

ARG2.val[]
value after RPM

ARG3.on

minor word ON exists

For : SPINDL / RPM , 1000 , ON (ARG1.on = 0

(ARG2.on = 1 , ARG2.nval = 1 , ARG2.val[1] = 1000

(ARG3.on = 1

For : SPINDL / 1000 , RPM

(ARG1.on = 1 , ARG1.nval = 1 , ATH1.val[1] = 1000

(ARG2.on = 1 , ARG2.nval = 0

(ARG3.on = 0

For : DISPLY / this is an example
(ARG0 = “this is an example”

Applicable limitations :

- One minor word may be associated to the same major word only once.

- The number of numerical values following a major or a minor word shall not

 be greater than the number admitted by the grammar, but it may be lower.

- a major word that admits a string of characters bans any value and minor word.

- The order in which the syntactical definition is written is that of the arguments of the

 macros .

Standard grammar

For elementary instructions, grammar is frozen, and the syntaxis cannot be modified. However, more definitions can be added. These instructions and their description are listed in the SGPOST dictionary.

Example : GOTO , GOLEFT , MULTAX , TRACUT , INDEX

Adaptable grammar

Technology instructions can be adapted. Their description is in ‘grammar’ file, in one of the following directories, in the following order :

if SGP_GRAMMAR environment variable exists :

SGP_GRAMMAR

if SGP environment variable exists :

SGP / grammar

if not :

./grammar

[image: image2.png]
To check or change the name of the grammar file, select Modifie in Postprocesseur menu.

To edit the grammar file with utility SGPOST, select num/grammar field in Edite menu
[image: image3.png]
Major file

Each major word is identified by a unique number. Common words are defined in SGPOST, whereas the others can be created or changed in ‘major’ file, to be found in one of the following directories :

if SGP environment variable exists :

SGP / major

if not :
./major

To check or change the name of the major file, select Modifie in Postprocesseur menu.

To edit the major file with utility SGPOST, select major field in Edite menu
[image: image4.png]
If a particular name is to be added, it must not be already listed in SGPOST dictionary, and its unique number must be less than 3000.

The following is the list of the common, defined, major words :

FROM
9002

GOTO
9003

GOCIR
9004

GODLTA
9005

GOCYCL
9012

GOFWD
9008

GOLFT
9006

GORGT
9007

GOBACK
9009

AUTOPS
9010

INDIRV
9011

MULTAX
9001

UPDATE
6008

FEED
6011

TLON
6004

TLLFT
6005

TLRG
6006

TLAXIS
6007

UNITS
3012

CUTTER
6000

INTOL
6001

OUTTOL
6002

END

1

STOP
2

OPSTOP
3

 RAPID
5

BREAK
16

CUTCOM
1007

FEDRAT
1009

DELAY
1010
OPSKIP
1012

MACHIN
1015 SEQNO
1019

AUXFUN
1022

TOOLNO
1025 ROTABL
1026

ORIGIN
1027

COOLNT
1030

SPINDL
1031

ROTHED
1035

TRANS
1037

TRACUT
1038

INDEX
1039

COPY
1040

PPRINT
1044

PARTNO
1045

INSERT
1046

PREFUN
1048

CYCLE
1054

LOADTL
1055

SLOWDN
1063

ROTATE
1066

LINTOL
1067

VTLAXIS
1070

POSITN
1072

OFSTNO
1083

SET

1087

CAUTION : only numbers that are lower than 3000 and that are not included in the above list can be used

Minor file

Each minor word is identified by a unique number. Common words are defined in SGPOST, whereas the others can be created or changed in ‘minor’ file, to be found in one of the following directories :

if SGP environment variable exists :

SGP / minor

if not :
./minor

To check or change the name of the minor file, select Modifie in Postprocesseur menu.

To edit the minor file with utility SGPOST, select minor field in Edite menu
[image: image5.png]
If a particular name is to be added, it must not be already listed in SGPOST dictionary, and its unique number must be less than 3000.

The following is the list of the common, defined, minor words :

CENTER
2

INTOF
5

INVERS
6

LEFT
8

LENGTH
9

PARLEL
17

RADIUS
23

RIGHT
24

TANTO
27

TRANSL
29

XYPLAN
33

XYROT
34

YZPLAN
37

YZROT
38

ZXPLAN
41

ZXROT
42

ALL

51

LAST
52

SAME
54

MODIFY
55

MIRROR
56

START
57

NOMORE
58

CCLW
59

CLW

60

INCR
66

TO

69

PAST
70

ON

71

OFF

72

IPM

73

IPR

74

RPM

78

MAXRPM
79

TURN
80

BORE
82

XAXIS
84

YAXIS
85

ZAXIS
86

FLOOD
89

MIST
90

STEP

92

SFM

115

AAXIS
140

BAXIS
141

CAXIS
142

RANGE
145

FULL
147

MILL
151

DEEP
153

NOW
161

NEXT
162

DRILL
163

TAP

168

MM

171

CM

172

INCH
173

FT

174

UAXIS
227

VAXIS
228

WAXIS
229

ORIENT
246

DWELL
279

RAPTO
280

FEDTO
281

BRKCHP
288

RTRCTO
295

MMPM
315

MMPR
316

CSS

319

FPM

322

FPR

323

SMM

505

OSETNO
508

CAUTION : only numbers that are lower than 3000 and that are not included in the above list can be used

The controller

Controller description includes writing formats, codes, machine-tool strokes, maximum feedrates and other information of general character. This information is stored in 'data' file, in one of the following directories, in the following order :

if SGP_DATA environment variable exists :

SGP_DATA

if SGP environment variable exists :

SGP / data

if not :

./data

To check or change the name of the grammar file, select Modifie in Postprocesseur menu.

To edit the grammar file using SGPOST utility, select num/data field in Edite menu, however, the data can be read or edited using the utilities (Format, Code, Divers, Code G, Code M, Limites) provided in the Postprocesseur menu.

[image: image6.png]
Formats
The format specifies the way the numerical value of a code shall be written.

example N1234 G16R+ X12.5

syntaxis : format = num , sign , leadzero , nlead , point , trailzero , ntrail

num

= format number

sign

= (1 , 0) the sign is mandatory or not

leadzero
= (1 , 0) leading zeros are mandatory or not

nlead

= max. number of figures of the integer part

point

= 0 no decimal point

 1 decimal point is mandatory

 -1 decimal point to be written if necessary

 2 decimal point is mandatory, the character is ','

 -2 decimal point to be written if necessary, the character is ','

trailzero
= (1 , 0) trailing zeros are mandatory or not

ntrail

= max. number of figures of the decimal part

examples :

N1234 format = 1 , 0 , 0 , 6 , 0 , 0 , 0

X2.500 format = 2 , 0 , 0 , 5 , 1 , 1 , 3

R+

format = 3 , 1 , 0 , 0 , 0 , 0 , 0

G02

format = 4 , 0 , 1 , 2 , 0 , 0 , 0

You can readily read, edit, create or delete formats using SGPOST utility, by selecting Postprocesseur then Format .

[image: image7.png]
Codes

The codes specify the writing format of the ISO code and establish links with the postprocessor.

syntaxis : code = num , name , format , max , link

num = number of the code

nom = name of the code (character '_' stands for space character)

format = number of the associated format

max = maximum number of codes in a block.

link
 = link used for intelligent behaviour of the postprocessor

 possibles values (NCODE , XCODE , YCODE , ZCODE , ACODE ,

 BCODE , CCODE , UCODE , VCODE , WCODE , ICODE , JCODE ,

 KCODE , RCODE , FCODE , FICODE , FRCODE , SCODE , GCODE ,

 MCODE , GFCODE)

example :

code = 1 , N , 1 , 2 , NCODE

code = 2 , _X , 1 , 1 , XCODE

code = 2 , _Y , 1 , 1 , YCODE

code = 2 , _F , 1 , 1 , FCODE

code = 3 , , 1 , 1 (numerical value only)

The order in which the codes are written in the tape blocks follows the order in which they are specified. The number of the code can be specified via CODE / num , , instruction. But in

this case, writing is transparent. If intelligent writing, that is recording, analyzing and testing ISO code value is required, the following instructions are to be used :

NCODE
: block number

X-UCODE
: motion code

I-KCODE

: circular motion centre code

RCODE

: circular motion radius code

FCODE

: feedrate code in mm per minute

FICODE

: feedrate code in inverse time mode

FRCODE

: feedrate code in mm per revolution

SCODE

: spindle rotation code

GCODE

: G-codes

GFCODE

: G-codes for feedrate modes

MCODE

: M-codes

For more information, consult the applicable instructions, GCODE, X-RCODE, FCODE, SCODE, MCODE in the dictionary.

You can readily read, edit, create or delete formats using SGPOST utility, by selecting Postprocesseur then Code.

[image: image8.png]
Machine-tool strokes

The following specifies maximum strokes for linear XYZUVW axes :

maximum stroke = XCODE , val

maximum stroke = YCODE , val

maximum stroke = ZCODE , val

maximum stroke = UCODE , val

maximum stroke = VCODE , val

maximum stroke = WCODE , val

The following specifies minimum and maximum strokes for rotary ABC axes :

maximum stroke = ACODE , val1

minimum stroke = ACODE , val2

maximum stroke = BCODE , val1

minimum stroke = BCODE , val2

maximum stroke = CCODE , val1

minimum stroke = CCODE , val2

[image: image9.png]
You can readily read, edit, create or delete axis strokes using SGPOST utility, by selecting Postprocesseur then Limites.

Time management
The following specifies maximum feedrate in units per minute for linear XYZUVW axes :

maximum feedrate = XCODE , val

maximum feedrate = YCODE , val

maximum feedrate = ZCODE , val

maximum feedrate = UCODE , val

maximum feedrate = VCODE , val

maximum feedrate = WCODE , val

The following specifies maximum feedrate in degrees per minute for rotary ABC axes :

maximum feedrate = ACODE , val

maximum feedrate = BCODE , val

maximum feedrate = CCODE , val

You can readily edit these parameters using SGPOST utility, by selecting Postprocesseur then Limites.

[image: image10.png]
Specifying minimum time it takes the controller to execute a block :

block time = val (time in seconds)

These values provide means to estimate machining time more accurately, taking in consideration rapid traverse motions as well as too short motions.

Modes
Specifying the circular interpolation mode.

circular mode
0
I,J,K specified in absolute dimensions

1
I,J,K specified in incremental dimensions

2
circle specified by its radius R

3
circle specified in space by IJK

4
circle specified by 2 points (calling GOTO twice)

Specifying the co-ordinate mode.

co-ordinate mode =
0
the co-ordinates are generated at tool tip

1
the co-ordinates are generated at tool centre

(tool must be specified carefully

2
the co-ordinates are generated at pivot point

pivot dimension = tool length + gauge length

3
X-axis co-ordinates are generated at diameter

(this is for turning)

4
Y-axis co-ordinates are generated at diameter

(this is for turning)

5
Z-axis co-ordinates are generated at diameter

(this is for turning)

Specifying feed mode for rotary motions :

inverse time mode =
0
inverse time mode feed is not active.

1
inverse time mode feed is active.

Specifying ISO code sorting mode for writing :

sorting mode = 0
codes are written in the order in which they are created

sorting mode = 1
codes are written in the order in which they are specified

End of block

With some controllers, generating end-of-block characters is required.

To specify this : end of block = characters

Example, with Heidenhain controllers : end of block = *

in DOS : end of block = ^m (0x0d character)

Machine-tool kinematics
Rotary axes may be either table- or head-type. They are to be described in kinematic order, from workpice to spindle, as follows :

Specifying a table-type rotary axis :

table = code , axis , law , x , y , z

table = code , i , j , k , law , x , y , z

Specifying a head-type rotary axis :

head = code , axis , law , x , y , z

head = code , i , j , k , law , x , y , z

code = ACODE or BCODE or CCODE , applicable machine-tool axis.

axis = X or Y or Z or -X or -Y or -Z , rotation centerline (the sign specifies the direction)

(i,j,k) = rotation centerline vector, applicable to any case

law = 0 linear angular position law

 1 modulo angular position law

(x,y,z) = pivot vector, next member coupling vector.

example with 2 tables

[image: image11.wmf]axe C

Z

X

axe

 B

100

30

table = CCODE , Z , 1 , -30.0 , 0.0 , -100.0

table = BCODE , Y , 0 , 0.0 , 0.0 , 0.0

You can readily edit these parameters using SGPOST utility, by selecting Postprocesseur then Divers.

[image: image12.png]
example with 2 heads

[image: image13.wmf]axe A

axe C

100

50

Z

X

Pivot

head = CCODE , Z , 0 , 50 , 0 , 0

 head = ACODE , X , 0 , 0 , 0 , -100

Specifying rotary axis optimization mode where 2 rotary axes are present :

optimum mode = 0 : optimized motion is first axis motion

optimum mode = 1 : optimized motion is second axis motion

Some conversion fonctions operate on the following kinematics :

abc = ABC(i,j,k)
: uses tool centerline to calculate machine axis positions.

ijk = IJK(a,b,c)
: uses machine axis positions to calculate tool centerline.

xyz = XYZ(x,y,z)
: converts Workpiece co-ordinates into Machine-tool co-ordinates.

Using SGPOST utility, by selecting Postprocesseur then Divers.

[image: image14.png]
G-codes

The postprocessor can manage the behaviour of some G-code instructions. For this purpose, the value of the code, and whether it is modal or not must be specified. This does not have to to be done for the other G-codes.

To specify this : gcode = val1 , val2 , mode

val1 = postprocessor value.

val2 = value generated on the tape.

mode = 0 instruction is non-modal

 1 instruction is modal

Intelligent behaviour G-code values :

motions : G0, G1, G2, G3

plane : G17, G18, G19

tool offsets : G40, G41, G42

canned cycles : G80, G81, G82, G83, G84, G85, G86, G87, G88, G89

mode : G90, G91

feedrate : G93, G94, G95

spindle : G96, G97

[image: image15.png]
You can readily edit these parameters using SGPOST utility, by selecting Postprocesseur then Code G .
M-codes

The postprocessor can manage the behaviour of some M-code instructions. For this purpose, the value of the code must be specified. This does not have to be done for the other M-codes.

To specify this : mcode = val1 , val2

val1 = postprocessor value.

val2 = value generated on the tape.

Intelligent behaviour M-code values :

spindle : M3, M4, M5, M19

tool coolant supply : M7, M8, M9

[image: image16.png]
You can readily edit these parameters using SGPOST utility, by selecting Postprocesseur then Code M .
The macros
Any major word that specifies an instruction, except for a few elementary instructions, can be altered by a 'macro' which will bear the name of that major word. A macro is itself a text file which contains elementary APT instructions, variables and jumps.

When the major word is so altered by the macro, the instructions the macro contains are executed in succession. A macro can call another macro.

Example : generating a traverse speed positioning upon FROM instruction

FROM file will include the following instructions :

$$ beginning

$$

$$ elementary action FROM must be executed

$$ the arguments following FROM are not mandatory, as they are the

$$ same as those in the calling programme.

$$

FROM

$$

$$ traverse speed motion

$$

RAPID

GOTO/ ARG1.val[1] , ARG1.val[2] , ARG1.val[3]

$$

$$ end
In a posprocessor, search for macros is performed in the local directory first, then in the global directory :

Local directory

if SGP_MACRO environment variable exists :

SGP_ MACRO

if SGP environment variable exists :

SGP / macro

if not :

./macro

Global directory

if SGP_MAGEN environment variable exists :

SGP_ MAGEN

if SGP environment variable exists :

SGP / macgen

if not :

./macgen

Variables

There exists 2 types of variables : numerical variables, and text variables. Their type is determined by the way they are used. The variables are global to the postprocessor and any variable can be used in any macro. Take care of interferences, however.

A = 1 numerical variable

a = "sgpost" text variable

For numerical variables, a one-dimensional array can be used. Its size will be that of the greatest factor used. Standard operators and functions are admittable.

A[10] = 5.0 + C * 10 + SIN(20)

B[A[10]] = COS(30)

A text variable is a character array that can be utilized.

line = "TOTO and TATA are in a boat "

nom2 = nom1[1,4]

nom2 contains TOTO

nom3 = nom1[8,12]

nom3 contains TATA

The main functions for utilizing the variables are described in detail in the dictionary.

STRVAL ()
: extracts the numerical value contained in the text variable

STRLEN()
: gives the length being used of the text variable

STRCMP()
: compares 2 text variables , 0 if equal

STRGET()
: gets the field of a string of characters

FORMAT()
: converts a numerical variable into a text variable with a specified

 format

CHAR()

: specifies the character corresponding to a decimal value

Some particular variables, called 'system variables', which describe the status of the postprocessor are direct access. To avoid interference with user variables, all are formatted XXXX.xxxx .

Jumps

Testing an instruction :
IF (test) instruction
Testing a series of instructions

IF (test) THEN

.........

ELSEIF (test1)

.........

ELSE

.........

ENDIF

The condition may be written using the standard operators :

.EQ.
or =

testing for equality

.NE. or #

testing for inequality

.LT. or <

testing for inferiority

.GT. or >

testing for superiority

.LE. or <=
testing for inferiority with equality

.GE. or >=
testing for superiority with equality

.AND. or &
logical and

.OR. or |

logical or

examples
IF (A = B) THEN

IF ((A < 1) & (B > 2)) do not forget the brackets

IF (A)
if A is not equal to 0
Forward or backward jump, to a position indicated by means of a label, is specified using instruction JUMPTO followed by its label.

example
IF (test) JUMPTO lab1

..............

#lab1 GOTO /
Labels are defined by character # followed by the name of the label

Macro exits

RETURN
:
immediate exit to the calling programme

EXIT

:
calls EXIT macro and interrupts the processing.

Links with the grammar

The calling arguments of any macro can be examined using a system variable called ARG.

ARG.num = number of the major word

ARG0 = string of characters following the major word

ARG1.on = existence of minor word 1

ARG1.nval = number of values of minor word 1

ARG1.val[] = values of minor word 1

ARG(n).on = existence of minor word (n)

ARG(n).nval = number of values of minor word (n)

ARG(n).val[] = values of minor word (n)

The order of arguments ARG1, ARG2, ARG(n) is that in which they are described in the grammar.

Example : grammar

SPINDL / 2500

SPINDL / ON

SPINDL / OFF

In SPINDL macro
ARG1.on = 1 , ARG1.nval = 1 , ARG1.val[1] = 2500 if SPINDL/2500

ARG2.on = 1 if minor word SPINDL/ON

ARG2.on = 1 if minor word SINDL/OFF

The following functions, though their execution is a little slower, are more flexible to use, because the order in which they are described in the grammar makes no difference :

ARG(“minor”)

: testing for the existence of the minor word

NVAL(“minor”)

: number of values behind the minor word

VAL(“minor”,n)

: value behind the minor word which is at position ‘n’

In SPINDL macro
ARG(“VALUE”) = 1 , NVAL(“VALUE”) = 1 , VAL(“VALUE”,1) = 2500 if SPINDL/2500

ARG(“ON”) = 1 , if SPINDL/ON

ARG(“OFF”) = 1 , if SPINDL/OFF

The debugger

Utility SGPOST makes it easier to debug the macros. Select debug in option menu. This option is default active.

[image: image17.png]
[image: image18.png]
Select menu Arrкt to mark the macros the execution of which you wish to check.

(G) = global directory macro

(L) = local directory macro

Now you can run the postprocessor. It will stop at marked macros, i.e. CUTCOM and CYCLE.

[image: image19.png]
Select Suivant to execute the postprocessor up to next line, Continue to execute it up to the next stop point, and STOP to stop the processing operation.

Use PRINT instruction to check every system or user variable during the execution.

[image: image20.png]

PRINT " status of the spindle = " SPINDL.on

PRINT " number of tools = " noutil

You can monitor the status of a variable by displaying it in the status window, at bottom right. For this purpose, select menu Voir, then specify the variable.

[image: image21.png]
The variable can be selected with the mouse, or typed directly in the status window using keyboard Inser key. The pointer of the mouse must be in the status window.

Search functions

When developing a postprocessor, statements to be found in the following instructions may have to be used, e.g. SPINDL after LOADTL. A particular instruction, called SEARCH is available for this purpose.

SEARCH / START , n

This will start, in the first n lines, a search for OFSTNO, FROM, GOTO, and PARTNO instructions, and an updating of the system variables involved.

SEARCH / ALL

This will start a search for extremes of motions in the co-ordinate system of the source file (SEARCH.xyzmin , SEARCH.xyzmax).

This will also start, in the whole file, a search for the list of the tools loaded, for the list of the feedrates, and for the first occurrence of OFSTNO, FROM ,GOTO,PARTNO instructions. Tool quantity, tool list and tool time are called SELCTTL.max, SELCTL.num[], SELCTL.time[]. In FEDLST.val[] array, the size of which is FEDLST.max., a general list of feedrates can be obtained by specifying (FEDLST.on = 1) and a list of feedrates per tool by specifying (FEDLST.on = 2). In FEDLST.val array, SELCTL.fedrat[] represents, for each tool, the maximum feedrate factor.

SEARCH / NEXT

Decodes next instruction. Access to the outcome of the search is provided for by the SARG system variables.

SARG.num = number of the major word

SARG0 = string of characters behind the major word

SARG1.on = existence of minor word 1

SARG1.nval = number of values of minor word 1

SARG1.val[] = values of minor word 1

SARG(n).on = existence of minor word (n)

SARG(n).nval = number of values of minor word (n)

SARG(n).val[] = values of minor word (n)

SEARCH / ON

Sets the startpoint of the search for SEARCH / NEXT

SEARCH / major1 , major2 , major3

The search is performed until one of the major words the associated number of which is major1, major2 or major3 is encountered. Access to the outcome of the search is provided for by SARG. MAJOR function gives the numerical value of major words.

major1 = MAJOR(“MAJOR1”)

[image: image22.png]

Special macros

INIT :
this macro is called at tape file opening.

FINI :
this macro is called at tape file closing.

GOCIR :
this macro is called at every circular interpolation

GOCYCL : this macro is called at every work motion containing a canned cycle ,

i.e. when CYCLE.on =1

Compiling the macros

If the postprocessor has been developed without the generator optional feature, the macros have to be compiled. Optional feature -comp is provided for this purpose.

sgpost -comp

The postprocessor will generate a priority-reading file containing the description of all the macros. The name of this file is as follows :

if SGP_MACRO environment variable exists :

SGP_MACRO.dat

if SGP environment variable exists :

SGP / macro.dat

if not :

./macro.dat

You will find these functions in Postprocesseur menu of SGPOST utility.

[image: image23.png]
The reverse generator

SGPOST can decode tape files, provided that all the codes (address + value) and special characters supported by the controller are defined in the controller file, like with a direct postprocessor.
Beginning and end of program

Decoding may start and stop at a character or at a string of characters. If the field is not specified, decoding will begin at the first character of the file and end at the end of the file.

beginning of text = %

end of text = %

Comments

Up to 4 types of comments are supported. A comment may contain one or several head and tail characters. If no tail characters are specified, the end of the comment is the end of the block.

comment = 1, (,)

comment = 2, $

Access to head and tail characters, as well as to comments is via SGPOST utility, by selecting Postprocesseur, then Divers.

[image: image24.png]
Links

The links are defined in the controller file by means of code instruction. Their us is to specify the action to be performed. This action may be standard or other.

code = num, name, format, max, link
Links calling one of GOTO, GOCIR or GOCYCL functions or macros:

XCODE, YCODE, ZCODE, ACODE, BCODE, CCODE, UCODE,VCODE, WCODE.

Links calling GOCIR function or macro :

ICODE, JCODE, KCODE, RCODE

Link specifying a variable. In this case the variables are replaced by their respective values or are utilized to call SETVAR or GETVAR macros.

VAR

Links specifying mathematical operators. In this case, computing is performed by SGPOST .

OP=

equality

OP+

addition

OP-

substraction

OP*

multiplication

OP/

division

OPCOS
cosine

OPSIN
sine

OPTAN
tangent

OPABS
absolute value

OPSQRT
square root

Links updating status variables :

GCODE for intelligent behaviour values

motion : G0, G1, G2, G3

plane : G17, G18, G19

offset : G40, G41, G42

cycle : G80, G81, G82, G83, G84, G85, G86, G87, G88, G89

mode : G90, G91

feedrate : G93, G94, G95

spindle : G96, G97

MCODE for intelligent behaviour values :

spindle : M3, M4, M5, M19

coolant : M7, M8, M9

NCODE for current block number value.

FCODE for current feedrate value.

SCODE for current spindle rotation speed value.

You can alter these links readily (Action fields), using SGPOST utility, by selecting Postprocesseur then Code.
[image: image25.png]
[image: image26.png]
Other links

In this case, the link name macro is called and executed with 6 numerical values as an argument.

ARG1.nval = 6

ARG1.val[1] = code value

ARG1.val[2] = code number

ARG1.val[3] = number of identical codes in the block

ARG1.val[4] = position of the code in the bloc

ARG1.val[5] = number of characters in the code value

ARG1.val[6] = 1 : +sign in the value

 -1 : -sign in the value

 0 : no sign in the value

Example : code = 13, T, 2, 1, TCODE

[image: image27.png]
When SGPOST decodes block N23G90M6T28, TCODE macro is called, and the arguments are 28, 13, 1, 4, 2, 0.

Example : code = 25, %, 2, 1, NOM

[image: image28.png]
When SGPOST decodes block %1024, NOM macro is called, and the arguments are 1024, 25, 1, 1, 4, 0

Special links

NCODE link calls NCODE macro if such exists.

GCODE link calls G(val) macro if such exists, or GCODE macro if such exists.

MCODE link calls M(val) macro if such exists, or MCODE macro if such exists.

Each end of block calls EOB macro if such exists.

Comment 1 calls COMMENT1 macro if such exists.

Comment 2 calls COMMENT2 macro if such exists.

Comment 3 calls COMMENT3 macro if such exists.

Comment 4 calls COMMENT4 macro if such exists.

VAR link calls macro GETVAR to read a variable. It calls SETVAR to write a variable.

[image: image29.png]
[image: image30.png]
[image: image31.png]
Contexts

Some ISO codes may have different meanings, as in the following example :

N1G0X100 and N2G4X2

In block N1, X-code represents an X-axis motion. In block N2, it represents a dwell time. In such cases SGPOST will derive the meaning out of the context. Any ISO, G- or M-code can define a context, but also any code can be associated to a context.

A maximum of 16 contexts can be defined, and called CTXT1, CTXT2, , CTXT16. All can be cumulated. They must be defined as follows :

for a code

: code = num, name, format, max, link, CTXTn

for a G-code
: gcode = val1 , val2 , mode , CTXTn

for an M-code
: mcode = val1 , val2 , CTXTn
To define a context using SGPOST utility, select Postprocesseur, then Code or Code G or Code M. Choose ‘aucun’in the Contexte field, or a number corresponding to the context.

[image: image32.png]
The code associated to a context will be selected only if the corresponding context is defined.

code = number, name, format, max, link, , CTXTn

A code can be associated to a context. It can also define another context.

code = 4, D, format, max, link, CTXT3, CTXT4
In the above example, if context CTXT3 is defined and if the block contains code D, then code 4 will be chosen, and it will, at the same time, define context CTXT4.

To associate a context using SGPOST utility, select Postprocesseur, then Code.

The code chart below corresponds to GCODE chart above.

[image: image33.png]
ISO oriented functions

To ease instruction decoding in the macros, SGPOST features functions allowing to consult the data contained in the current block.

Number of identical codes in current block :

ncode = ISODEF (code)

code = number of the code

ncode = number of codes encountered.

Position of a code in current block :

pos = ISOPOS (code, icode)

code = number of the code

icode = index of the code with same number

pos = position in current block

Code corresponding to a given position :

code = ISOCODE (pos)

pos = position in current block

code = number of the corresponding code

Value of a code in current block :

val = ISOVAL (code, icode)

code = number of the code

icode = index of the code with same number

val = value of the corresponding code

val = ISOVAL (-1, pos)

pos = position in current block

val = value of the corresponding code

To make block re-numbering easier, a function is provided to count the numbers of the previously read blocks.

i = ISONUM (num)

num : number of the previously read block

i : order of the block number

Any variable can be declared an equivalent to another. Such variables have 2 different names but they address the same numerical value.

nom1 = EQUIV (nom2)

nom1 = variable to be created

nom2 = existing text-type variable

System variables

SGP.erreur
number of errors

SGP.attention
number of warnings

SGP.nbloc
number of lines created

 SGP.entree[]
name of CLFILE or APT file

SGP.sortie[]
name of created TAPE file

SGP.linemax
max. length of decoded APT line (72 characers for CATIA)

SGP.linestart
1st charater decoded in APT line

EOF
end of file

Link with the grammar

current line

ARG.num
major word number

 ARG0[]
string of characters

ARG1.on
existence flag of minor word 1

ARG1.nval
number of values read for minor word 1

ARG1.val[]
values read for minor word 1

ARG(n).on
existence flag of minor word (n)

ARG(n).nval
number of values read for minor word (n)

ARG(n).val[]
values read for minor word (n)

search line

SARG.num
major word number

 SARG0[]
string of characters

SARG1.on
existence flag of minor word 1

SARG1.nval
number of values read for minor word 1

SARG1.val[]
values read for minor word 1

SARG(n).on
existence flag of minor word (n)

SARG(n).nval
number of values read for minor word (n)

SARG(n).val[]
values read for minor word (n)

Status of machine-tool controller

general status

AXE0.axe
index of first rotary axis (0, 4=A, 5=B, 6=C)

AXE0.type
axis type (1 = head, 2 = table)

AXE0.sens
default direction of motion (1 or –1)

AXE0.ijk[3]
rotation centerline vector

AXE0.pivot[3]
first rotary axis pivot vector

AXE1.axe
index of second rotary axis (0, 4=A, 5=B, 6=C)

AXE1.type
axis type (1 = head, 2 = table)

AXE1.sens
default direction of motion (1 or –1)

AXE1.ijk[3]
rotation centerline vector

AXE1.pivot[3]
second rotary axis pivot vector

DATUM[12]
current 4x3 initial transformation matrix (TRACUT)

 DATUM1[12]
previous 4x3 initial transformation matrix (TRACUT)

MODE.circle
circle description mode (1=IJK absolute, 2=IJK incremental, 3=radius)

MODE.rmax
maximum value of circular interpolation radius (0 = no interpolation)

MODE.inverse
activating or not reverse mode in 4- or 5-axis conditions (1, 0)

MODE.xyz
description of the point created (0=tool tip, 1=tool centre, 2= pivot

point, 3=diameter in X-axis, 4= diameter in Y-axis, 5= diameter in Z-

axis)

MODE.optim
optimized rotary axis (0 = first axis, 1 = second axis, 2 = shortest path)

INTOL
general calculation tolerance (default value = 0.01)

TIME.bloc
minimum bloc execution time (in minutes)

TIME.feedmax[9]
maximum feedrate for each axis (mm/minute or degrees/minute)

LIMIT.max[9]
maximum travel or limit allowed for each axis

LIMIT.max[9]
minimum limit allowed for each axis

TRANS[3]
translation of positioning coordinates

current status

LIMIT1.max[9]
current maximum limit for each axis

LIMIT1.min[9]
current minimum limit for each axis

ETAT0.multax
multax mode is active, or not (1, 0)

ETAT0.move
motion mode (0=rapid, 1=linear, 2=circular, 3=circular)

ETAT0.first
first point is defined, or not (1, 0)

ETAT0.tlaxis
tool length offset axis (-3=-Z, -2=-Y, -1=-X, 1=X, 2=Y ,3=Z)

ETAT0.bloc
block is a motion block, or not (1, 0)

ETAT0.supres
motion block writing :

0 = usual way of writing

1 = explicit writing of all the axis components

2 = describing a motion in the work plane, then in the perpen-

 dicular plane

3 = writing XYZ in each block

ETAT0.fedmod
feedrate mode (1=INVERS, 2=UPM, 3=UPR)

ETAT0.fedrat
feedrate value

ETAT0.plane
defining the active plane (1=XY, 2=ZX, 3=YZ)

ETAT0.time
machining time

ETAT0.cutdist
machining distance

ETAT0.mode
absolute or incremental coordinate mode(0, 1)

ETAT0.cycle
number of current cycle (0, n)

ETAT0.from[6]
FROM point xyzijk position

ETAT0.pts[6]
target point xyzijk position

ETAT0.xyzabc[9]
position of machine axes

previous status

ETAT1.multax
multax mode is active, or not (1, 0)

ETAT1.move
motion mode (0=rapid, 1=linear, 2=circular, 3=circular)

ETAT1.tlaxis
tool length offset axis (-3=-Z, -2=-Y, -1=-X, 1=X, 2=Y ,3=Z)

ETAT1.fedmod
feedrate mode (1=INVERS, 2=UPM, 3=UPR)

ETAT1.fedrat
feedrate value

ETAT1.plane
defining the active plane (1=XY, 2=ZX, 3=YZ)

ETAT1.mode
absolute or incremental coordinate mode(0, 1)

ETAT1.pts[6]
target point xyzijk position

ETAT1.xyzabc[9]
position of machine axes

Technological data

BREAK.on
breaking a program, or not (1, 0)

BREAK.nfile
number of broken files

BREAK.nline
number of lines of the file being written

BREAK.maxline
maximum number of lines allowed

CIRTOL.on
conversion into circular interpolation function active, or not (1, 0)

CIRTOL.val[3]
tolerance on conversion into circular interpolation

COOLNT.on
coolant supply active, or not (1, 0)

COOLNT.mode
coolant supply mode

CUTCOM.on
radius compensation active, or not (1, 0)

CUTCOM.mode
radius compensation mode (1 = left, 2=right)

CUTCOM.val
radius compensation value

CUTTER.d
diameter of current tool

CUTTER.r
tool corner radius

CUTTER.h
tool height

CUTTER.A
drill bit angle

CYCLE.on
cycle active, or not (1, 0)

CYCLE.mode
type of cycle (0, n)

CYCLE..def
cycle definition (1, 0)

CYCLE.irapto
approach (1, 0)

CYCLE.rapto
approach value

CYCLE.ifedto
specifying the depth (1, 0)

CYCLE.fedto
depth

CYCLE.irtrcto
specifying the retract (1, 0)

CYCLE.rtrcto
retract value

CYCLE.iincr
number of increments to specify (n, 0)

CYCLE.incr[]
increment value

CYCLE.istep
specifying the pitch (1, 0)

CYCLE.step
pitch value

CYCLE.idwell
specifying a dwell

CYCLE.dwell
dwell time value

CYCLE.iorient
specifying spindle orientation

CYCLE.orient
spindle orientation angle value

CYCLE.fedmod
mode (2=UPM, 3=UPR)

CYCLE.fedval
feedrate value

FEDLST.on
activating feedrate parameter specifying mode (1=global, 2=per tool)

FEDLST.first
index of first feedrate parameter

FEDLST.max
number of feedrate values

FEDLST.val[]
list of feedrate values

FEDRAT.mode
feedrate mode (1=INVERS, 2=UPM, 3=UPR)

FEDRAT.upm
feedrate value in Units Per Minute

FEDRAT.upr
value in Units Per Revolution

FEDRAT.unit
feedrate unit (0=MM, 1=INCH)

LINTOL.on
activating linearization function or not (1, 0)

LINTOL.val[2]
tolerance on linearization in feed and rapid mode

LOADTL.num
number of tool-in-spindle

LOADTL.osetno
tool length offset value

OFSTNO
current origin value

OPSKIP.on
optional skip active or not (1, 0)

OPSKIP.nom[]
optional skip features

PART.no[]
PARTNO value.

SEARCH.xyzmin[3]
minimum motion limits as obtained by using SEARCH

SEARCH.xyzmax[3]
maximum motion limits as obtained by using SEARCH

SELCTL.max
total number of tool changes in the program

SELCTL.num[]
list of the tools in loading order

 SELCTL.fedrat[]
index of latest feedrate of the tool

SELCTL.time[]
machining time of the tool

SEQNO.on
writing block numbers, or not (1, 0)

SEQNO.num
value of next block number

SEQNO.incr
block number increment value

SEQNO.step[0]
increment value for numbered blocks

SEQNO.step[1]
current value of numbered blocks

SEQNO.max
maximum value of block numbers

SLOWDN.on
activating or not the feed override function

SLOWDN.fedmin
minimum allowed feedrate for feed override function

SLOWDN.fedmax
maximum allowed feedrate for feed override function

SPINDL.on
spindle rotation active, or not (1, 0)

SPINDL.sens
spindle rotation direction (0 = CLW, 1 = CCLW)

SPINDL.val
spindle rotation speed value

SPINDL.mode
spindle rotation mode (1 = SUM, 2=RPM)

SPINDL.max
maximum allowed spindle rotation speed value

SPINDL.range
spindle rotation speed range value

TOOLIB.max
number of tools in the library

TOOLIB.num[]
numbers of the tools in the library

TOOLIB.D[]
diameter of the tools in the library

TOOLIB.r[]
corner radius of the tools in the library

TOOLIB.L[]
length of the tools in the library

TOOLIB.corlg1[]
tool length offset 1 in the library

TOOLIB.corlg2[]
tool length offset 2 in the library

TOOLIB.cordia[]
tool radius offset in the library

SGPOST version 4.6
- 1 -
SGPOST version 4.6
- 36 -

_1236876225.unknown

_1236876224.unknown

